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EXPERIMENTAL INVESTIGATION OF LIQUID IMPACT

IN A MODEL PROPELLANT TANK

By David O. Stephens

Langley Research Center

SUMMARY

An experimental investigation was conducted to assess the problem of liquid

impact in booster and space-vehicle propellant tanks. A partially filled cylin-

drical tank with hemispherical ends was subjected to sudden reversals in axial

acceleration. The liquid behavior was observed, the structural loads were meas-

ured, and methods of impact attenuation were evaluated. Variables included:

tank acceleration, initial condition of the liquid free surface, baffle config-

uration, and a range of liquid viscosity, vapor pressure, and surface tension.

The liquid response was found to be highly dependent upon the behavior of

the free surface just prior to the change in acceleration. A "geysering" action

was observed when the surface was initially quiescent whereas a continuous flow

around the walls and bulkhead was observed in cases where a slosh mode was pres-

ent. The magnitude of the impact was attenuated appreciably by screen baffles

but was insensitive to changes in liquid viscosity, vapor pressure, and surface

tension. The impact loads observed in these tests_ however, do not appear to

be of sufficient magnitude to pose a significant structural problem.

INTRODUCTION

The dynamic behavior of liquid propellants has been the subject of numerous

investigations. In general, efforts have been concentrated on the oscillatory

behavior of the liquid surface (slosh) and the effects of this motion on the

control and structural response of the vehicle. Recently_ however_ concern has

developed over a somewhat different type of problem_ that of liquid impact.

The problem of interest involves the impulsive movement or surse of the pro-

pellant mass from the aft end of the tank to the forward bulkhead due to an
effective "thrust reversal." There are several conceivable situations which

could constitute such a thrust re,/ersal. These range from maneuvering or

docking in deep space to a termination of thrust in the atmosphere. At present;
attention has been centered on the latter case of thrust termination either

intentionally (abort) or unintentionally (engine failure or premature ignition

during staging). Upon removal of the thrust, the predominant force acting on

the vehicle is that of the aerodynamic drag which opposes the vehicle motion.

This reversal of force occurs over a very short period of time and thus the

vehicle experiences a rapid change in magnitude and direction of acceleration.



The liquid, however, has a tendency to proceed forward during deceleration of
the vehicle and impact the forward bulkhead. Such an impact mayrupture the
upper dome, cause a structural break-up_ and, in the case of hypergolic fuels_
mayresult in a fireball.

Although no comprehensive study of liquid impact phenomenahas been con-
ductedj certain aspects of the problem have been examined either analytically
or experimentally. The initial effort in this area (ref. i) was an experi-
mental investigation of the impact pressures resulting from decelerations
(ranging from 10g to 50g) of a small model. The model design was based upon
the results of a dimensional analysis in which an attempt was madeto simulate
conditions in a 6-foot-diameter (183 cm), 12-foot-long (566 cm) prototype tank.
Results indicated that peak pressures were approximately proportional to tank
deceleration and were greater for cases wherein the tank and "thrust vector"
were inclined to the vertical. Since the general extrapolation of these
results to large vehicles was questionable, an attempt was made(ref. 2) to
examine the problem analytically. A preliminary analysis utilizing an assumed
spring massmodel indicated that damaging stress levels could result from
thrust termination over certain portions of a flight trajectory. In view of
these results_ the present investigation was initiated in an attempt to obtain
a better definition of the phenomenaand the associated problem areas.

A partially filled cylindrical tank with hemispherical ends was subjected
to sudden reversals in axial acceleration. The liquid behavior was observed,
the structural loads were measured_and the methods of impact attenuation were
evaluated. Variables included: tank acceleration, initial condition of the
liquid free surface, baffle configuration_ and a range of liquid viscosity,
vapor pressure_ and surface tension. The results of this investigation are
reported herein.

A motion-picture film supplement illustrating the behavior of the liquid
is available on loan. A request card and a description of the film are
included at the back of this document.

SYMBOLS

The units used for the physical quantities defined in this paper are given
both in U.S. CustomaryUnits and in the International System of Units (SI)
(ref. 3). The following table presents factors relating these two systems of
units:

U.S. Customary

Unit

ft

ibf

slug

centipoise

°Fahrenheit + 459.67

Conversi on

factor

(*I

0.3o48
4. 448

14.595
0. 001

5/9

SI unit

meters

Newton

kilogram

Newton second/meter 2

OKelvin

*Multiply value in U.S. Unit by conversion factor to obtain equivalent value in SI unit.
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a

NEu

F

g

n

P

P

NRe

t

V

v

NWe

_a

0

u

O3

acceleration, ft/sec 2 (m/sec 2)

Euler number

force, ib (N)

gravitational acceleration on earth, ft/sec 2 (m/sec 2)

length, ft (m)

integer

pressure, Ib/in 2 (N/m 2)

period, sec

Reynolds number

Sub scripts :

f

m

rel

0,1,2

time, sec

liquid volume, ft3 (m3)

velocity of tank, ft/sec (m/sec)

Weber number

kinematic viscosity, centipoise

liquid density, slug/ft3 (kg/m3)

surface tension, (N/m)

circular frequency, radians/sec

full scale

model

relative

denote specific times

(Ns/m2)

APPARATUS AND TEST PROCEDURE

Impact Simulator

The apparatus used to simulate the liquid impact conditions is shown sche-

matically in sketch (a). Basically, it consisted of an 8.5-inch-diameter
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Sketch (a).- Schematic representation of impact simulator.

(21.6 cm) tank partially filled with water (_ percent by volume). The tank

was attached to a lO0-pound (45.36 kg) drop weight by means of a steel cable

passing over a system of pulleys. The forces were applied to the tank through

support rings (fig. l(a)) which were attached to the cylindrical section; thus,

the upper bulkhead loading was due to the liquid impact and dome inertia only.

Upon release of the drop weight, the tank was accelerated upward and reached a

velocity proportional to the release height of the weight. Upon impact of the

drop weight, an arresting force was applied to the tank with an elastic cable

and caused the tank to decele_te with respect to the liquid. Because of the

elastic nature of the arresting cable, which remained slack until impact of the

drop weight, the deceleration started from 0 g and was a function of the tank

displacement. A short period of time existed between the upward acceleration

and the maximum deceleration and simulates to a degree the acceleration time

history of a vehicle experiencing a thrust termination.

Tank and Instrumentation

Details of the tank and instrumentation are shown in figure i. The tank,

8.5 inches (21.6 cm) in diameter and 15.5 inches (39.4 cm) in overall length,

was constructed of i/8-inch-thick (0.3 cm) transparent plastic to facili-

tate visual observations and high-speed motion-picture studies of the fluid
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motions. It is made up of four flanged cylindrical sections and two flanged

hemispherical ends. This type of construction facilitated the installation of
baffles at the section interfaces as shown in figure l(b). Baffle configura-

tions consisted of flat rings having a O.15-inch (0.4 cm) internal protrusion

and screen baffles of i/4-inch (0.6 cm) mesh that completely spanned the tank

cross section.

The instrumentation consisted of an accelerometer rigidly attached to the

base of the tank frame_ a pressure cell mounted flush in the center of the

upper dome, and six force transducers located around the circumference of the

tank. The force transducers consisted of thin strain gaged beams fixed to the

cylindrical section. These beams supported the dome as shown in sketch (b).

Beam support

Beom

Stroin goge

nk dome

Tank wall

Sketch (b).- Force transducer.

In its equilibrium position, a slight clearance existed between the dome and

cylinder to allow freedom in pitch as well as vertical translation. The stiff-

ness of the beam springs was such that the dome displacements were relatively

small and the frequency high. The data from the transducers were recorded on

an oscillograph and supplemented with high-speed motion pictures of the liquid.

Procedure and Measurements

The sequence of events and the type of data recorded are illustrated with

the schematic time history (fig. 2). Shown is the accelerometer trace and one

of the six recorded force outputs. The acceleration trace_ with time running

from left to right_ reveals the release of the drop weight and vertical ascent

of the tank which results in the level of acceleration existing prior to to,

the time of impact of the drop weight. At time to_ both the tank and liquid
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experience Og, and, in addition, the tank has the deceleration resulting from

the elastic cable superimposed. In subsequent discussions, the difference

between the tank acceleration level and the Og or "free-liquid acceleration

level" is called the relative acceleration. It is not implied or assumed that

all the liquid is in free fall or Og during the time interval prior to its

contact with the dome, but it is believed that the liquid particles in transit

between the surface and the dome prior to impact are essentially in free fall.

The impact force corresponding to the acceleration trace is also shown in

figure 2. The slight rise in force at tO is due to the inertia of the dome.

With a further increase in time, particles reach the dome and a gradual increase

in force is noted, the increase reaching a maximum at tI. The force then

decreases rapidly and approaches zero at t2, the time of "zero" relative accel-

eration and the conclusion of the test. Further details of the time history are

presented and discussed with the presentation of the data.

Test Program

"Quiescent" force and pressure measurements as well as "modal" force and

pressure measurements were taken for a series of drop heights and arresting-

cable spring constants. The term quiescent refers to cases where the liquid

surface was essentially undisturbed prior to arrest and modal refers to cases

where the liquid was oscillating in its fundamental antisymmetric sloshing mode

Quiescent Model

6

Sketch (c).- Liquid behavior following thrust reversal for

quiescent and modal initial surface conditions.



at the time of tank arrest. These two initial conditions and their associated
flow patterns following tank deceleration are clearly visible in the motion
pictures which were obtained during the tests. The basic fluid motions are
also shownin sketch (c). Tank and liquid variables included: the smooth-wall
or unbaffled condition; tank fitted with simulated "Z-ring" baffles; the
i/4-inch (0.6 cm) screen or meshbaffles; and a range of liquid viscosity,
vapor pressure, and surface tension.

PRESENTATIONANDDISCUSSIONOFRESULTS

Impact Force

Impact-force data obtained with the smooth-wall tank are shownin figure 3.
The peak forces associated with modal and quiescent impacts are presented along
with the relative acceleration which existed at the time of maximumimpact
force. It is noted that the force increases with acceleration and, presented
in this manner, forces associated with the modal and quiescent impacts show
essentially the samerelationship to acceleration. The liquid behavior, how-
ever; is very different in the two cases. If the surface is initially quies-
cent, a series of particles and streamers leave the surface and travel to the
dome,but if the surface is oscillating as in the modal case, the liquid travels
up one wall around the domeand back downthe opposite wall as illustrated in
sketch (c).

The force data points presented in figure 3 were obtained by averaging the
peak outputs of the six transducers. This technique was used since the force
output of each gage was approximately the sameand no measurable time differ-
ence existed between the force peaks. Preferably, the value of acceleration
would be measureddirectly from the records; however, the resolution at t I was
such that muchdiscretion was required in selecting an acceleration value. The
relative acceleration areI at the time of impact was therefore calculated
from the recorded acceleration time histories by using the relationship:

areI = Vo_ sin _(t I - to)

where

v0

fl) ----m

P

P

tI

upward velocity of tank at time of application of arresting

force tO (fig. 3)

period of acceleration pulse (fig. 2)

time of peak impulse
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This relationship was used to obtain the relative accelerations since _3 to,

and t I could be very accurately determined from the records, and the accel-

eration pulse closely resembled a half sine wave as would be expected in the

case of an ideal linear mass-spring system. The use of relative acceleration

as the prime variable followed limited attempts to correlate the data with peak

acceleration, peak velocity, and velocity at the time of fluid impact, none of

which exhibited a consistent effect on the dome pressures and forces.

Impact Presssure

Impact-pressure measurements at the center of the dome in the smooth-wall

tank are shown in figure 4. The magnitude of the peak pressure is presented as

a function of the relative acceleration. Although the peak pressure appears to

increase with acceleration_ the trend is not as consistent as the corresponding

force increase with acceleration. However, inspection of the data showed that

the pressure impulse or area under the pressure time curve also exhibited an

acceleration dependence similar to that associated with the force. Pressures

associated with modal and quiescent impacts appear to be similar in magnitude

for a given relative acceleration. It is interesting to note that if the

recorded peak pressure is multiplied by the projected area of the dome, the

resulting force is about twice as high as the measured peak force. This rela-

tionship indicates the existence of a pressure distribution which is probably a

maximum in the center of the dome.

Baffle Effectiveness

The effectiveness of the screen type of baffle for the suppression of the

impact forces is shown in figure 5. The quiescent and modal impact forces are

shown by the circles and squares_ respectively_ and for comparative purposes_

the faired curve which represents the data obtained with the smooth-wall tank

is also shown. The data shown were obtained from the tank fitted with four

screen baffles at the locations shown in figure l(b). The data exhibit a

reduction of impact force by approximately 30 percent. It is probably possible

to reduce the impacts to much lower levels by controlling the mesh size of the

screen. No significant reductions in force were observed when the tank was

fitted with ring baffles only.

Effect of Liquid Properties

Up to this poin% all the results discussed were obtained with water at

room temperature as the test liquid_ In extrapolating the results of these

tests to full-scale vehicles, an understanding of the effects of the liquid

properties is of fundamental importance since rigorous scaling was not attempted

in these tests, nor does it appear to be generally feasible. Dimensional analy-

sis of this problem incorporating variables such as vapor pressure, surface ten-

sion 3 and viscosity yields dimensionless groups which may be impossible to sat-

isfy in the model and prototype with available liquids. (See ref. 4.) Thus, a

phase of this study was devoted to the examination of the effects of several of
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the fluid properties_ namely, viscosity, surface tension, and vapor pressure.

To accomplish this phase of the study, impacts were made with water ranging in

temperature from 58° F (276.48 ° K) to 175 ° F (352.59 ° K). The results of these

studies are presented in figure 6. The measured force data, normalized on the

room-temperature force curve of figure 3 are shown as a function of temperature.

For convenience, the variations of viscosity and vapor pressure are also pre-

sented as a function of the temperature to indicate the range covered in the

tests. Within this range, no significant variation of force response could be

detected. The data shown by the solid symbols were measured after the addition

of a detergent and an antifoam agent to the liquid to reduce the surface ten-

sion. No change was noted in behavior or force response with this approximately

3 to i reduction in surface tension.

Although no particular similitude was maintained_ a wide variation of

Reynolds, Weber, and Euler numbers resulted from these temperature and surface-

tension variations. This range is illustrated in table I where the ratios of

the parameters for a typical full-scale launch vehicle to those of the model are

presented.

TABLE I.- VARIATION OF RATIOS OF PARAMETERS ACHIEVED BY VARYING

WATER TEMPERATURE AND SURFACE TENSION

Parameter

Euler number

Reynolds number

Weber number

Ratio

NEu) f

(NRe)f

Nwe)f

Ratio of variables

PmPf Zm am

Of Pm _f af

Fuel

0.15 to 46.7

Propellants

Oxidizer

(Nwe) m

pf dmI_f_2 af

0.0369 to ii.63

7.41 to 76.9

15.0 to 300.0

23.0 to 238.0

41.2 to 820.0

Since no variation of force was observed for the range of surface tension_

vapor pressure, and viscosity, it may be possible to scale the results based

only upon the inertial characteristics of the liquid such as density, volume,

and acceleration. The validity of this assumption can be determined, at least

to a degree, by correlating or comparing results obtained from several models

of different size. At the present time, the only experimental results avail-

able for comparison are those presented in references i and 4 in which a tank

was partially filled with carbon tetrachloride and accelerated vertically



downwardalong the longitudinal axis. The results of this comparison are shown
in figure 7. The nondimensional parameter F/pVa is presented as a function of
acceleration g. The parameter F/pVa is obtained by dividing the measured
force F by the "hydrostatic force," pVa, where pV is the total massof
liquid at the time of impact and a is the acceleration, that is, pVa is the
load that would result if the acceleration was applied to the tank for a suffi-
cient period of time to allow all the liquid to reach an equilibrium state in
the upper dome. It is probable that this hydrostatic force would ultimately
result whena vehicle experiences a thrust termination in the atmosphere. Thus,
the parameter F/pVa is a measure of the relative severity of the impact or
degree of overshoot possible. Presented in this manner, the relative severity
of the impact appears to decrease with an increase in acceleration. The ratio
exceeds I only in the acceleration range below i g. This condition indicates
that the hydrostatic loads will be more severe than the impact loads whena
vehicle is subjected to decelerations greater than ig. Furthermore, a vehicle
designed to withstand hydrostatic loads proportional to ng (where n _ i) will
be able to withstand the impact forces resulting from decleration ranging from
0 to ng. Thus, it appears that a launch vehicle having identical ends, for
example, is capable of withstanding impact loads of muchgreater magnitude than
those observed in these tests and represented by the data presented in figure 7.

Impact Pulse Shape

Selected force and pressure pulses are shownin figure 8 for quiescent and
modal impacts. These time histories were traced directly from the records and
are shownwith the appropriate force, pressure, and time scales. The values of
acceleration apply to the peak values of force and pressure. In general, the
force and pressure shapes are similar for a given impact; however, the area
under the curve is slightly larger in the modal cases.

CONCLUSIONS

An investigation has been conducted to assess the problem of liquid impact
in booster and space-vehicle propellant tanks. The results of the investigation
are as follows:

I. The liquid exhibits one of two flow patterns depending upon the condi-
tion of the surface prior to arrest, that is, (a) if the liquid surface is
undisturbed or quiescent, it travels in a series of streamers; (b) if the sur-
face is oscillating in its fundamental antisymmetric mode, a portion of the
liquid travels up one side of the tank, around the dome, and downthe opposite
side.

2. The impact force is dependent upon the relative acceleration of the tank
at the time of impact.

3. For a given acceleration level, there appears to be no significant dif-
ference in the magnitude of the modal and quiescent impact force.
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4. The pressure in the center of the domeis about twice as high as the
value obtained by dividing the average force by the projected area.

5. The force level is not significantly altered by the inclusion of ring
baffles; however, a reduction in force of approximately 30 percent was observed
with the inclusion of i/4-inch (0.3 cm) screen baffles.

6. For the range covered in this investigation, no dependencyof the force
or pressure on the vapor pressure, surface tension, or viscosity was observed.

7. The ratio of impact force to hydrostatic force is less than I for all
values of tank deceleration greater than ig. Therefore, a tank designed to
withstand the hydrostatic loads resulting from tank deceleration (greater than
i g) should not experience excessive liquid impact loads.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Station, Hampton,Va., June 29, 1965.
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Figure 8.- Force and pressure impact pulse shapes.
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A motion-picture film supplement L-878 is
available on loan. Requests will be filled in
the order received. You will be notified of the
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The film (16 mm, 5 min, color, silent)
presents the behavior of a contained liquid
following a rapid change in tank acceleration
for both quiescent and model surface conditions.
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Hampton,Va. 23365
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